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ABSTRACT: Two-terminal resistive switching devices are
commonly plagued with longstanding scientific issues including
interdevice variability and sneak current that lead to computa-
tional errors and high-power consumption. This necessitates
the integration of a separate selector in a one-transistor-one-
RRAM (1T-1R) configuration to mitigate crosstalk issue, which
compromises circuit footprint. Here, we demonstrate a multi-
terminal memtransistor crossbar array with increased parallel-
ism in programming via independent gate control, which allows
in situ computation at a dense cell size of 3−4.5 F2 and a minimal sneak current of 0.1 nA. Moreover, a low switching energy of
20 fJ/bit is achieved at a voltage of merely 0.42 V. The architecture is capable of performing multiply-and-accumulate
operation, a core computing task for pattern classification. A high MNIST recognition accuracy of 96.87% is simulated owing
to the linear synaptic plasticity. Such computing paradigm is deemed revolutionary toward enabling data-centric applications
in artificial intelligence and Internet-of-things.
KEYWORDS: memtransistor, MoS2, self-selective, multi-terminal, in-memory computing

The application of artificial intelligence (AI) technology
in perception tasks (e.g., computer vision, speech
recognition) and Internet-of-Things (IoT) puts

significant demands on computing speed and power efficiency.
However, conventional von Neumann architecture which
physically separates the processing and memory units is
suffering from fundamental limitation in data rate and energy
consumption due to the enormous data movement between
both subsystems. To overcome the memory wall and to push
the envelope for energy efficiency, a radically different
computing paradigm that allows in situ computation within
the memory, or in-memory computing, is essential to address
the issues associated with data-abundant computing driven by
AI. For instance, in realizing artificial neural networks to
perform image classification workloads, various types of
crossbar array are constructed using nonvolatile memory
(NVMs) such as two-terminal resistive random access memory
(RRAM),1,2 phase change memory (PCM)3 or three-terminal
flash memory,4 ferroelectric field-effect transistors (FeFET),5,6

among others.
Among the above-mentioned crossbar array architecture, the

1-R is the simplest form wherein a two-terminal RRAM is
sandwiched between bit lines (BLs) and word lines (WLs),
which provides excellent area efficiency (4 F2) and very high-
density integration.1,2,7 However, the high sneak current that
flows through the neighboring memory cells remains a

fundamental issue. Such issue may be mitigated with a high
I−V nonlinearity by engineering the memristor itself8−10 or by
adding a rectifying selector to each cell (1S-1R).11 However,
the available array size is still limited since the performance
requirement for memristor and selector is very demanding.7

To further reduce sneak current and enable accurate
programming/reading in large-scale crossbar array, the one-
transistor one-resistor (1T-1R) architecture has been the most
widely studied strategy wherein a selector transistor is
integrated to each cell.1,7 The third-terminal (gate) in the
transistor offers better controllability even though this
structure suffers from large circuit overhead (e.g., area,
power)7,12 and complex fabrication processes which detrimen-
tally compromise the integration density. Therefore, three-
terminal unit cell is desirable due to its ability to combine
resistive switching (RS) and selection function into a single
device without any footprint penalty. Some three-terminal unit
cells, such as flash memory4 and FeFET,5,6 have been
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investigated which are found to achieve a more linear and
symmetric electrostatic gate control. However, the nonvolatile
RS behavior is represented by the device threshold voltage and
subsequent drain current modulation is achieved by gate
voltage induced charge-trapping or ferroelectric polarization.
Thus, despite being a three-terminal device, the gate control is
still not able to provide additional selection function to avoid
crosstalk issue in neighboring cells.
Memtransistor, a hybrid integration of memristor and

transistor, could combine RS and selection functions into a
single device structure.13,14 Recently, multi-terminal mem-
transistors have been developed using chemical vapor
deposition (CVD) grown single-layer polycrystalline molybde-

num disulfide (MoS2) thin film.13,14 The memtransisor is
configured in a field-effect transistor (FET) structure wherein
the RS behavior is mainly programmed by drain voltage based
on grain-boundary-mediated defects migration, whereas the
gate terminal offers controllability over sneak current by
turning off unselected cells. Moreover, the MoS2 memtransis-
tor is capable of implementing synaptic plasticity, making it a
potential building block to realize artificial neural network
(ANN) for in-memory computing.13,14 Recently, a dual-gate
memtransistor crossbar array is demonstrated with top- and
bottom-gate to independently control each memtransistor.15

To program individual memtransistor, a drain voltage of 20 V
is applied to selected bit line at a global back-gate voltage of

Figure 1. The structure and electrical performance of MoS2memtransistor cell. (a) An illustration of the arrangement of substrate, crucible,
and precursor flow placements in tube furnace for MoS2 growth with sulfur (S) and MoO3 in the upstream and downstream regions,
respectively. The method enables 2 in. wafer-scale growth. (b) AFM scan image reveals the terraces due to annealed sapphire substrate steps
and distinct grain boundaries within the grown MoS2 film. (c) Cross-sectional TEM image of the memtransistor cell, showing a basic top-
gated FET and the interlayer dielectric for source line interconnection. (d) Zoom-in view of the MoS2 channel region indicated by the red
dashed box, revealing the monolayer signature of MoS2 channel material, with a scale bar of 10 nm. (e) EDS maps of the cross-section in (c)
and the MoS2 channel, respectively. (f) 150 cycles of Ids−Vds curves of one single memtransistor cell measured at a grounded gate voltage.
The red arrows indicate Vds sweep direction, implying a nonvolatile RS behavior. (g) Retention behavior of the HRS and LRS for a duration
of 800 min. The LRS is set by a 1 V DC loop. (h) Eight data storage levels are achieved with both the gate and drain terminals modulation.
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−60 V and a selected word line (top-gate) voltage of 10 V,

which causes significant power consumption. Moreover,

previous works based on high-k gate dielectric14 and

postgrowth defect engineering using helium-ion irradiation16

have been employed to reduce the switching voltage, but the

switching energy is still larger than nano-Joule which is far

from meeting the low-power consumption requirement of in-
memory computing.
Here, we demonstrate a 10 × 10 self-selective crossbar array

composed of three-terminal memtransistor unit cells with a
dense cell size of 3−4.5 F2 on a continuous monolayer poly-
MoS2 thin film. An optimization of terrace-assisted growth via
annealing promotes epitaxial MoS2 growth with orientated

Figure 2. Electrical characterization of the MoS2memtransistor crossbar array. (a) 3D schematic illustration of a 10 × 10 MoS2
memtransistor crossbar array. Current flow paths through the selected cell during the write operation is indicated by a purple dashed
line. The picture at the bottom left corner shows the as-fabricated crossbar array on sapphire substrate. (b) Zoom-in 3D schematic
illustration of two neighboring memtransistor cells. The two cells have an individual gate terminal while sharing the same drain and source.
(c) Top-view optical image of the as-fabricated MoS2 memtransistor crossbar array. The horizontal drain (left) and gate (right) electrodes
are the alternating bit lines and word lines, and the vertical electrodes are the source lines. (d) Histogram of the switching voltage at a set
voltage of 10−8A of 64 memtransistor cells. (e) Benchmark plot comparing the switching energy per bit vs. switching voltage of MoS2
memtransistor with other representative nonvolatile resistive switching devices, covering printed electronics (MoS2 RRAM crossbar9,10 and
all WSe2 1T-1R12), hBN (1-R crossbar array,8 synaptic RRAM,20 and vdW heterostructure synapse22), HfOxRRAM,23,24 and standalone
MoS2 memtransistor (back-gate configuration,13 top-gate configuration,14 and He-ion beam treated channel.16) (f) Conductance map of a 5
× 5 memtransistor subarray. (i) the conductance of 25 memtransistors at HRS. (ii) The memtransistor at the center is set into LRS while the
neighboring 24 memtransistors remained at HRS. (iii) The sneak current of the neighboring 24 memtransistors which is represented by the
current difference between (i) and (ii).
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grains, which effectively enables a low switching voltage of 0.42
V and a switching energy of 20 fJ/bit. The gate terminals of
each memtransistor in the same row are connected to form the
word lines (WLs), which serve as natural selectors to enable
multibit data storage, suppress sneak path leakage current and
realize linear and symmetric synaptic weight updating.
Furthermore, the circuit simulation using a SPICE-compatible
and well-calibrated compact device model confirms a good
readout margin and power efficiency. Finally, multiply-and-
accumulate operation is experimentally demonstrated by the
memtransistor crossbar array, and a MNIST handwritten
recognition task is simulated which achieves a pattern
recognition accuracy of 96.87%.

RESULTS AND DISCUSSION
Three-Terminal Memtransistor Unit Cell. Monolayer

poly-MoS2 layers are prepared on c-plane (0001) sapphire
(Al2O3) substrates via CVD using MoO3 powders as Mo
precursor and S powders as S precursor in a 2-zone CVD
reactor (Supporting Information (SI) Figure S1). Growth of
good quality, fully covered continuous monolayer MoS2 layers
on large area substrates (up to 2 in. wafer, Figure 1a) has been
realized by carefully optimizing the deposition parameters and
growth-setups. A key feature of our CVD method is the use of
thin Ni (or NiO)-foam as S-vapor trap to suppress MoO3
powder poisoning by placing it inside of a closed cylindrical
tube containing the MoO3 precursor (see Figure 1a) or putting
it on top of crucible boat containing MoO3 powders as
described in MoS2 growth in Methods section. Prior to the
growth, the sapphire substrate is annealed in air at 1100 °C for
1 h to obtain well-defined terraces on its surface (Figure 1b)
which promotes the growth of epitaxial MoS2 grains on c-plane
sapphire.17 The monolayer characteristic of the synthesized
poly MoS2 is confirmed by Raman and photoluminescence
(PL) spectra (SI Figure S2).
The as-fabricated memtransistor array on poly-MoS2 film is

characterized by transmission electron microscopy (TEM),
and the cross-section image of a memtransistor is shown in
Figure 1c. A gate dielectric made of Al2O3 with a thickness of
20 nm is employed while the interlayer dielectric comprises of
a 50 nm Al2O3 which serves as the insulating oxide for source
lines (SLs) formation. The zoom-in image in Figure 1d and SI
Figure S3 show a uniform MoS2 channel thickness down to a
monolayer of 0.7 nm, which exemplifies the ultimate
scalability. The EDX map of the cross-section and the channel
further confirms the uniform distribution of the elements
(Figure 1e).
Figure 1f shows the characterization of RS behavior of a

single memtransistor cell with 150 consecutive Ids−Vds sweeps
at a grounded gate voltage, which exhibits evident bipolar
nonvolatile switching. The cumulative probability plot of the
high resistance state (HRS) and low resistance state (LRS) at a
reading voltage of 0.2 V shows a low temporal (cycle-to-cycle)
variation (SI Figure S4). With a defined set current of 10−8 or
10−7A, the memtransistor shows a low average switching
voltage of 0.42 and 0.62 V (SI Figure S5), respectively, which
is 2 orders of magnitude smaller than previous works13−16 that
is critical to realize energy-efficient in-memory computing. The
HRS/LRS ratio as read at 0.2 V remains intact through 800
min cycling measurements, implying a long-term nonvolatility
(Figure 1g). During the cycling measurements, 80 cycles are
performed with an interval of 10 min per cycle, as shown in the
top X-axis. In contrast to two-terminal RRAM, the

memtransistor offers an extra flexibility in deploying both
drain and gate terminals to effectively tune the conductance
(synaptic weight). The charge accumulation under large Vds
and positive gate voltage causes an increase in channel
conductance. As shown in Figure 1h and SI Table S1, the
current measured with different Vds range and Vgs range exhibit
eight discrete data storage levels within a large dynamic range
of 104, which is critical to the computing precision in ANN.

Self-Selective Memtransisor Crossbar Array Opera-
tion. The self-selective MoS2 memtransistor crossbar array
architecture and its operating mechanism are schematically
described in Figure 2a. Details of the device fabrication steps
are described in the Methods section and in SI Figure S6. The
drain/gate terminals of memtransistors in the same row are
connected to form the bit lines (BLs)/word lines (WLs). The
source lines (SLs) connect the source terminals of the
memtransistors in the same column together, which run
vertically to the BLs/WLs in a separated layer. There is one
access transistor connecting each BL/WL/SL in the peripheral
circuits outside the array. When setting the memtransistor cells
in the crossbar array, as shown in Figure 2a, the selected BL is
applied with a voltage Vset and the selected WL is grounded or
positive biased since the memtransistor shows a n-type
behavior. The access transistor on the selected source line
(SL) is turned on to collect the current. The unselected SLs
are switched off by the access transistor and the unselected
WLs are floated or applied with negative voltages such that
there are no currents flowing through those unselected
memtransistors. Figure 2b shows a zoom-in schematic of two
neighboring cells which share the same drain to reduce the
number of BL to (M/2 + 1) in an M row × N column crossbar
array. The crossbar array architecture allows the memtransis-
tors to be independently accessed with a linear I−V relation
under the gate control, so each memtransistor’s conductance
can be precisely tuned in an analogue manner. Further
discussion on the architecture is described in SI Figure S7. To
exclude the possible RS caused by metal/Al2O3/metal due to
the overlap area between SLs and WLs, the I−V curve is
measured in SI Figure S8 which only shows a low current of
less than 10−11 A without any RS.
The microscopic top-view image of the as-fabricated 10 × 10

MoS2 memtransistor crossbar array is shown in Figure 2c. The
RS curves of the 100 memtransistors are shown in SI Figure
S9. It is shown that memtransistors located at the edge show
some fluctuations which may compromise the learning
accuracy of neuromorphic systems. One mitigation strategy
is to use it as a dummy column that remains in minimum
conductance state.18 In the peripheral circuit, the weighted
sum of dummy column is subtracted from all the partial
weighted sums. This method is especially useful for
memtransistors with a limited on/off ratio.18 A histogram
from the inner 64 memtransistors in Figure 2d shows an
average set voltage of 0.35 V, which conforms to a normal
distribution with a standard deviation σ of 0.04 V when the set
current is set at 10−8A, indicating a good spatial homogeneity
across devices. An HRS/LRS statistical study of the
memtransistors is shown in SI Figure S9. Taking into
consideration the current fluctuation of edge devices, as
shown in SI Figure S9, a yield of at least 64% is achieved. The
uniformity of grain boundaries is a critical factor in controlling
device variability, which is not as uniform as the metal/
insulator/metal structure such as hBN RRAM in which a high
yield of 98% is demonstrated.19 To achieve a tight control of
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device variability, it is important to ensure that grain sizes are
much smaller than the channel area (i.e., product of channel
length and width) in order to average out the effect of
individual grain boundary geometries. Overall, as shown in
Figure 2e, our devices show one of the lowest set voltage and
switching energy (20 fJ/bit, SI Figure S10) as benchmarked
with previously reported MoS2 memtransistors,13,14,16 2DMs
(hBN, WSe2, MoTe,2 et al.)8,9,12,20−22 and transition metal
oxide-based memristors.23,24 Recently, bioinspired protein
nanowires memristor has been shown to achieve an even
lower switching voltage of 40−100 mV.25 Moreover, the hBN-
based memristor is predicted to achieve a switching energy
down to zeptojoule regime if the electrical noise of the
semiconductor parameter analyzer could be improved
further.19

We postulate that the low switching energy is promoted by
the oriented grains in the poly-MoS2 channel.

26,27 It has been

well-established that the GBs-facilitated S vacancy movement
along the channel, which gives rise to defect profile
redistribution, should account for the resistance switching
behavior in MoS2 memetransistor.14,26,27 Oriented grains
bridging the source and drain, and parallel to the direction
of current will make the movement of S vacancy more
favorable to be triggered, since lower barrier along the channel
will be experienced.27 The sneak current is further studied by
programming a pattern in a 5 × 5 subarray and the current
difference of unselected devices before and after programming
is compared (Figure 2f). First, the conductance of each
memtransistor at HRS in a subarray is recorded, as shown in
Figure 2f (i). Then the memtransistor at the center is set into
LRS wherein the device is subjected to a set voltage of +1 V.
The conductance of the selected memtransistor at LRS shows
a 30-fold larger as compared with HRS (Figure 2f (ii)). Figure
2f (iii) demonstrates the conductance difference of all the

Figure 3. Compact modeling and circuit simulations. (a) Layout of the shared BL structure used in this work with a cell size of 4.5 F2 and a
more compact structure with the source line overlapped with channel, which achieves a cell size of 3 F2. (b) Circuit diagram of the
memtransistor array with parasitic resistance and capacitance. (c) Simulated Ids−Vds from compact model vs. measured MoS2 memtransistor.
(d) Dynamic response of long-term potentiation behavior based on compact model. (e) Readout margin for three different wire resistances
simulated by SPICE model. The unit wire resistance is based on Au (blue) used in this work, 50 nm Cu interconnection (yellow) and 5 nm
Cu interconnection (red). (f) Simulated power efficiency with the three interconnection schemes mentioned in (e).
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neighboring unselected devices. It can be seen that the
influence to the devices at the nearest two columns is greater
than the devices located farther from the selected device.
However, it is worth noting that the sneak current remains at a
low level of less than 0.1 nA.
Material-Device-Circuit Co-design of Memtransistor

Array. With the insatiable technology scaling for increasing
memory integration capacity, the voltage drop along the
interconnection gradually reduces the voltage available to drive
the memtransistor. In order to evaluate the circuit perform-
ance, we investigate the material-device-circuit codesign with
respect to memtransistor device behavior, physical layout,
parasitic effect, and interconnect properties (readout margin
and power efficiency) when the integration capacity is
increased.
We first analyze the physical layout using λ-based design rule

with feature size F = 4λ = the minimum half-pitch.12,28 All the
critical feature sizes in the layout are the minimum values
which are listed in the Methods section. The left schematic

shown in Figure 3a presents a shared-drain layout adopted in
this work, which has a cell size of 4.5 F2. Such cell size is
comparable to the 1-R structure (4 F2), but smaller than the all
tungsten diselenide (WSe2) 1T-1R structure (7 F2)12 and the
SRAM structure (120−150 F2).29 To further reduce the cell
size, an even compact structure is shown on the right
schematic in Figure 3a wherein the SLs could be fabricated
directly on top of isolation oxide. This compact architecture
could further reduce the cell size to 3 F2. By cointegrating the
transistor and memristor into a compact memtransistor cell
would enable dense on-chip monolithic integration with
CMOS logic. The crossbar array is further built by assembling
cells into an interconnected network. Figure 3b shows the
proposed cell model which includes the wire resistance of BLs/
WLs/SLs, the coupling capacitance between two neighboring
wires and the stray capacitance between the interconnect wires
and the reference plan (source line).30 The calculation of
resistance and capacitance are described in Methods section.
To describe the RS behavior, a surface potential-based physical

Figure 4. The implementation of multiply-and-accumulate operation by MoS2memtransistor crossbar array. (a) Circuit diagram of the MoS2
memtransistor crossbar array and the vector-matrix multiplication principle. Measured and arithmetic currents at (b) HRS and (c) LRS of
the two selected memtransistor cells with respect to time. Reading condition: VD1 = 0.1 V, VD2 = 0.1 V, VG1 = 0 V, VG2 = 0 V. (d) The
currents of two selected memtransistor cells at HRS and LRS, respectively, and the calculated average accuracy.
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compact model for the memtransistor is utilized.26,31 The RS
behavior is described by the correlation between the dynamics
of the total defect/trap density and the grain boundary energy
barrier (Eb).

26,31 It is developed on the basis of traditional
transport theory in poly material which incorporates grain size
dependence. A detailed description of our compact model is
described in SI Note S1. The transient and dynamic compact
model behavior has been calibrated against the experimental
results to validate the model, as shown in Figure 3c and 3d.
The performance of the memtransistor crossbar array is then

evaluated by HSPICE with an increase in the integration
capacity. In the following discussion, we focus on the worst-
case scenario wherein the selected cell is located at the corner
furthest from the BL voltage source and the ground, as shown
in Figure 3b, where the voltage drop caused by the BL
resistance is the largest.32,33 The readout margin and power
efficient are simulated under three process feature size: (1) F =
400 nm for gold interconnect used in this work, (2) F = 50 nm
for Cu interconnect used by industry today, and (3) F = 5 nm
as projected by ITRS.30 The readout margin is defined as the
voltage imposed to the selected cell under the worst-case
scenario over the input voltage, as shown in Figure 3e, which
evaluate the voltage drop over the interconnect. It is shown
that almost 100% voltage is delivered up to megabit-scale (106)
capacity for all three different types of wire. The vector matrix

multiplication (VMM) operation would be accurate when the
interconnect resistance is negligible compared with the
memtransistor resistances. The 10% readout margin criterion
can support a gigabit-scale (109) memtransistor crossbar array
using today’s Cu interconnect technology with a 50 nm feature
size. Figure 3f demonstrates the power efficiency of the
interconnection over memtransistor and the memtransistor
over the whole circuit. It is shown that as the integration
capacity increases, the power consumption induced by
interconnect would become a dominant limiting factor.
Overall, the results indicate that the need for having a low
interconnection resistance is becoming increasingly nontrivial.
These results imply the benefits of employing memtransistor
crossbar array in simplifying the fabrication process and
potentially enabling compatibility with high-volume CMOS
manufacturing.

The Implementation of Multiply-and-Accumulate
Operation. Mathematically, the in-memory computing can
be decomposed into a series of multiply-and-accumulate
operations that can be implemented using the memtransistor
crossbar array architecture. The equivalent circuit diagram and
the vector dot product process is shown in Figure 4a and SI
Figure S11. In our methodology, the input signal (encoded as
the applied voltage to the BLs) is multiplied with the
corresponding weight element (encoded as conductance states

Figure 5. The dynamic response and pattern classification. (a) Potentiation and depression of memtransistor cell with positive/negative
pulse train showing the long-term potentiation and long-term depression. The pulse train consists of consecutive set pulses (1.2 V
amplitude) followed by consecutive reset pulses (−1 V amplitude). The pulse trains include 100/300/500 positive pulses and 100/300/500
negative pulses, respectively. The current is recorded at a 0.2 V read pulse after each set/reset pulse. Pulse width: 10 ms; Pulse period: 50
ms; τup = τdown = 100 μs. (b) Nonlinearity of the LTP and LTD of three pulse train sets mentioned in (a). (c) The pulse train of 150 set
pulses with a pulse amplitude of 1.2 V (blue line) and a pulse train of increased pulse amplitude of 1.2 V, 1.4 V, and 1.6 V, each with 50 set
pulses (red line). The condition is the same as that used in (a). (d) A three-layer neural network scheme is employed. (e) Accuracy evolution
as a function of training epochs for memtransistor crossbar array with three pulse train sets as shown in (a).
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of the memtransistor), and by utilizing Ohm’s law for
multiplication and Kirchhoff’s laws for accumulation, the
weighted sum can be obtained by reading the current in the
SL. As can be seen, a voltage vector Vi is applied to the ith row
(BLs) while the voltage-induced currents of each memtransis-
tor are collected at the jth grounded columns (SLs). Herein, a
total current vector of Ij = ∑iViGij, is collected. During
conductance states setting of the selected cells, the selected
WLs are grounded or positive biased while all of the unselected
WLs are floated or negatively biased to completely deplete the
carriers in the channel to avoid sneak current. At the same
time, the selected SLs are turned on to collect the current
while the remaining unselected SLs are turned off by the access
transistors to further avoid sneak current flowing through those
unselected memtransistor cells. Moreover, each dot product
between the input vector and column vector is noninterfering
and thus enables semiparallel programming (column-by-
column), which would increase the training efficiency.
Here, we use a subcircuit which consists of two input and

one output neurons to perform a basic current accumulation
operation, as shown in Figure 4b,c. Figure 4b shows the HRS
current of two independent cells in the same column and the
current that passes through the corresponding SL. In the off
state, the current of both memtransistors show a low level of
0.1 nA, which indicates an excellent isolation between the
selected and unselected cells with minimal sneak current
flowing through. Then the two memtransistors are set into
LRS simultaneously with a set voltage of 1 V. After setting into
LRS, as shown in Figure 4c, the programmed states over the
initial states show a 10-fold difference for both memtransistor
cells. For both the HRS and LRS, the multiplication products
equal to the summed current through the SLs, as shown in
Figure 4d. As compared with the arithmetic results, the
measured results demonstrate an accuracy of 97.17% and
98.76%, respectively. Overall, the experimental demonstration
indicates a good control over gate leakage current and sneak
current, which implies its potential to perform VMM using
larger scale crossbar arrays.
Synaptic Plasticity and Pattern Classification Simu-

lation. To implement VMM-based neural network algorithm,
we first characterize the long-term plasticity which is used to
store trained synaptic weights for each layer in the artificial
neural network (ANN). Figure 5a shows the long-term
potentiation/depression for three different positive/negative
stimulus with a pulse width of 1 ms and a pulse amplitude of
1.2 V. The conductance update shows a gradual and linear
increase/decrease manner as compared with filamentary
RRAMs which usually experience a sudden drop due to the
stochastic dissolution of conductive filaments.34 Thus, RS
based on electric-field mediated defect migration is probably a
more reliable mechanism for enabling an analogue con-
ductance update. Moreover, the analog on/off ratio is
increased to more than 10 when the pulse number is increased
from 200 (100 potentiation/100 depression) to 1000 (500
potentiation/500 depression). The nonlinearity and symmetry
of LTP and LTD are further quantified using a device
behavioral model,35 as shown in Figure 5b. With 200 LTP/
LTD pulses, the plasticity behavior becomes closer to an ideal
linear and symmetric learning rule that is desirable for ANNs.
The increased number of pulses enable more conductance
states and a larger dynamic range, however, at the expense of a
higher nonlinearity after the conductance reaching its maximal
value. A mitigation strategy to avoid the saturation is to apply a

pulse train with potentiated voltage amplitude. As shown in
Figure 5c, with an increased pulse amplitude from 1.2 to 1.6 V,
the dynamic ratio is increased by 10-fold with a stimulation of
only 150 pulses, showing a better linearity as compared with a
1.2 V pulse train.
On the basis of the measured characteristics from a

standalone memtransistor, pattern classification workload is
selected as a case study algorithm wherein an ANN is modeled
to perform a supervised learning using the Modified National
Institute of Standards and Technology (MNIST) handwritten
recognition data set. As schematically shown in Figure 5d, a
fully connected multilayer perceptron (MLP) ANN with 28 by
28 preneurons, 700 hidden neurons and 10 output neurons is
generated by software. The 784 neurons of the input layer
correspond to a 28 × 28-pixel black-and-white MNIST image,
and the 10 output neurons correspond to 10 classes of digits
(0−9). The weighted sum of the input vector and the synapse
matrix is processed through a sigmoid activation and a
binarization function and then propagated to the output layer.
The gradient descent optimization algorithm is adopted to
adjust and update the weights, wherein the amount of delta
weight is calculated and back-propagated to the synapse matrix.
The optimization is iterated until the minimized loss function
that measures the error between the output and target values is
obtained. For the simulation, we consider two nonideal factors
of the memtransistor, that is, the finite number of conductance
levels and the device-to-device variation. First, the weights are
represented by the measured finite conductance levels in
Figure 5a. Since the weights used in algorithm can be either
positive or negative values (WA = −1−1), while the measured
weights in Figure 5a can only represent positive values (WH =
0−1), here a reconstruction WA = 2 WH −1, is performed to
expand WH to the range of WA.

18 Second, the device-to-device
variation (SI Figure S9c) is analyzed by introducing the
variation to the weight initialization step. The training set
comprises of 60 000 images which are randomly selected from
the MNIST data set and a separate testing set of 10 000
images. The simulation results in Figure 5e show that MoS2
memtransistor ANN can achieve a recognition accuracy of up
to 96.87%, which is comparable to the accuracy of other
memristors-based ANN.18,36

CONCLUSION
In this work, a memtransistor crossbar array architecture
capable of performing multiply-and-accumulate operation is
implemented to solve data-centric tasks in pattern recognition,
which could be extended to other AI-driven applications such
as speech recognition, autonomous vehicles, among others.
The use of three-terminal architecture with electrostatic gate
effect provides an additional knob to effectively suppress sneak
current, enables a linear and symmetry synaptic plasticity, and
a practical readout margin for gigabit-scale integration. The
ability to individually control each memtransistor also enables
semiparallel programming (column-by-column) of the entire
array, resulting in high training efficiency. Notably, the added
functionality is realized with our memtransistor crossbar array
architecture without any circuit footprint penalty, which is
superior over other traditional three-terminal unit cells (e.g.,
1T-1R, flash memory or FeFET). The promising results
demonstrated by the MoS2 memtransistor crossbar array hold
tantalizing prospect to realize practical neuro-inspired comput-
ing chips for deep neural networks and edge computing in the
coming age of AI and IoT.
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METHODS
Fabrication Process of Memtransistor Crossbar Array.

Monolayer polycrystalline MoS2 growth is performed in a 2 zone
CVD furnace with 1.5 g sulfur (99.998%, Sigma-Aldrich) positioned
in the upstream zone at 150 °C and 3.5 mg MoO3 (99.98%, Sigma-
Aldrich) positioned in the downstream zone at 750 °C with an Ar gas
flow of 50 sccm. The growth process is done with the tube maintained
at a pressure of 6 Torr. Both temperatures are held for 10 min before
being allowed to cool naturally to 600 °C before the furnace hatches
are open for rapid cooling. MoO3 and S powders are placed 30 cm
apart. MoO3 powder is placed in a single open-end crucible with a
piece of nickel foam (size 3 cm × 3 cm, 1 mm thickness with 400 μm
average pore size) placed directly above the MoO3 powder. The
sapphire substrate is placed above the foam, supported by pieces of
ceramic. The substrate used is a commercially bought c-plane (0001)
sapphire (Al2O3) substrate (Namiki Inc.) that has been annealed in
air at 1100 °C for 1 h before being used for CVD growth of MoS2.
This growth method is adapted from a previously reported work.37

The memtransistor crossbar array is directly fabricated on the as-
used sapphire substrate. A 10 × 10 array of MoS2 active regions are
first defined by a laser writer (LW405B) and then etched using
CHF3/O2 reactive-ion etching (RIE, Oxford Plasma Pro100) process.
The etching recipe could be found in our previous work.38 Then
MoS2 memtransistor channel (length: 400 nm, width: 20 μm), the bit
lines (BLs) which connect the drain terminal of the memtransistors in
the same row and the BL contact pad are defined by an electron beam
lithography (EBL: Jeol-6300FS) wherein PMMA (495, A4) is spin-
coated with a rotation speed of 4000 rpm for 70 s. This is followed by
10 nm Ti/40 nm Au evaporation by an AJA electron beam evaporator
and lift-off. After that, 20 nm Al2O3 gate dielectric is deposited by
atomic layer deposition (Savannah ALD) at 150 °C using
trimethylaluminum (TMA) and H2O precursors. Then the word
lines (WLs) which connect the gate terminal of the memtransistors in
the same row are formed. The WLs and the contact pads are written
using a laser writer and then the 10 nm Ti/40 nm Au metals are
deposited by e-beam evaporator. After lift-off process, 50 nm Al2O3 is
deposited to form the isolation oxide using the same gate dielectric
deposition recipe. Then laser writer is used to expose the Via patterns
wherein AZ1512 is used as the photoresist and the soft mask for the
following Via etch process. The AZ1512 is spin-coated with 6000 rpm
for 70 s. The dilute KOH solution is subsequently used to etch the
Vias wherein the 50 nm Al2O3 oxide and 20 nm Al2O3 beneath the
Via patterns are totally etched away in around 1 h. Finally, a third
laser writer process is performed to write the source lines and the
corresponding metal pads. Finally, 10 nm Ti/40 nm Au is evaporated
and lifted-off to fill the Vias and formed the SLs.
The morphology of poly-MoS2, especially the grain boundary, is

characterized using a Bruker Dimension FastScan Atomic Force
Microscope (AFM) in the tapping mode. The channel width and
length are determined by a Scanning Electron Microscopy (SEM, FEI
Helios). The cross-section of the memtransistor crossbar array is
obtained by high-resolution transmission electron microscopy
(HRTEM, FEI Tecnai F20). The focused ion beam (FIB) technique
is employed to prepare a lamella, used for obtaining a cross-sectional
image from the top metal gate to the sapphire substrate.
Electrical Measurement Techniques. Electrical measurements

are carried out in air condition at room temperature with a
semiconductor parameter analyzer (Keithley 4200) equipped with
pulse measurement units and a Lakeshore probe station.
SPICE Simulation of the Memtransistor Array. The RS curve

and the LTP of the memtransistor cell in Figure 3c,d are modeled
using Verilog-A. The readout margin and power consumption of
large-scale crossbar array is simulated using HSPICE.
All the critical feature sizes in the layout are the minimum values

according to the MOSIS deep submicron lambda rule: metal width
4F; metal space 4F; gate width 2F; contact width 2F; metal enclosure
contact 1F.
The evaluation details of the wire resistance are as below: suppose

the feature size is F (400 nm Au, 50 nm Cu, 5 nm Cu), the aspect

ratio (L/W) is set to be 1, and wire thickness is set to be H = 40 nm.
The resistivity of Au, 50 nm Cu and 5 nm Cu is 2.27 μΩ·cm, 4.77 μΩ·
cm, 14.41 μΩ·cm, respectively. The wire resistances of WL/BL/SL
are calculated using R = ρ·L/W·H. The capacitance is calculated by
the parallel plate capacitor model C = ε0 εr (A/d) where ε0 is the
value of the permittivity for air which is 8.84 × 10−12 F/m, and εr is
the permittivity of the dielectric material Al2O3 which is 9.1.
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