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area efficiency by mimicking human neu-
rons, synapses, and their networks.[3,4] 
Memristors are known as promising 
candidates for artificial synapses, consti-
tuting a key building block for neuromor-
phic computing. Moreover, crossbar array 
(CBA) made of memristors is promising 
to construct neural networks due to its 
fast and highly parallelized computing 
capability that utilizes multiply-and-accu-
mulate (MAC) operation based on Ohm’s 
law and Kirchhoff ‘s law.[5,6] However, 
state-of-the-art memristive CBA using 
transition metal oxide (TMO) is suffering 
from challenges such as limited resistive 
switching (RS) ratio and considerable tem-
poral (cycle-to-cycle) and spatial (device-to-
device) variability,[7–9] which necessitates 
alternative material platforms with better 
switching reliability.

Memristors based on 2D materials have 
emerged as a promising option over TMO-
based memristors[10,11] due to their unique 

properties and superior device performance, including large RS 
ratio,[12] low switching voltage,[12,13] small device variation,[14] as 
well as, capability of transition between the threshold and bipolar 
RS.[12,15] However, conventional 2D material-based memristive 
devices are fabricated using mechanical exfoliation, which lacks 
a good control of flake thickness and poor spatial variation.[16–19] 
Moreover, due to the single crystallinity of the exfoliated flake, 
post-treatments are required to decorate defects for creating 
switching pathways, such as, ion and electron beam irradiation, 
which hinder the implementation of circuits and computing 
hardware.[15,20–22] To address these inherent limitations caused by 
mechanical exfoliation, considerable efforts have been dedicated 
to develop scalable fabrication processes. One such approach is 
liquid-phase exfoliation and spin-coating, which can produce 
large quantities of materials, but at the expense of crosspoint 
area scaling and nanoflake orientation control, resulting in poor 
endurance and low array density.[23–25] Another scalable approach 
is wafer-scale 2D material synthesis that by far has been pri-
marily driven by logic applications which demand monolayer, 
high mobility, and single crystallinity.[26,27] Recently, memristors 
based on chemical vapor deposition (CVD) grown 2D materials 
with intrinsic defects have been demonstrated with the poten-
tial for wafer-scale device fabrication capability with low device 

Memristor crossbar with programmable conductance could overcome the 
energy consumption and speed limitations of neural networks when exe-
cuting core computing tasks in image processing. However, the implementa-
tion of crossbar array (CBA) based on ultrathin 2D materials is hindered by 
challenges associated with large-scale material synthesis and device inte-
gration. Here, a memristor CBA is demonstrated using wafer-scale (2-inch) 
polycrystalline hafnium diselenide (HfSe2) grown by molecular beam epi-
taxy, and a metal-assisted van der Waals transfer technique. The memristor 
exhibits small switching voltage (0.6 V), low switching energy (0.82 pJ), and 
simultaneously achieves emulation of synaptic weight plasticity. Furthermore, 
the CBA enables artificial neural network with a high recognition accuracy of 
93.34%. Hardware multiply-and-accumulate (MAC) operation with a narrow 
error distribution of 0.29% is also demonstrated, and a high power efficiency 
of greater than 8-trillion operations per second per Watt is achieved. Based on 
the MAC results, hardware convolution image processing can be performed 
using programmable kernels (i.e., soft, horizontal, and vertical edge enhance-
ment), which constitutes a vital function for neural network hardware.

1. Introduction

With the rapid rise of big data and artificial intelligence, alter-
native computing hardware for beyond-CMOS electronics is 
required to circumvent challenges associated with power con-
sumption and data transport latency.[1,2] Electronic synapses 
and their artificial neural networks (ANNs) are imperative to 
overcome the power consumption limitation in conventional 
von Neumann architecture due to their superior energy and 
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variation.[14] However, this transfer method can introduce a high 
density of wrinkles and chemical residuals on the transferred 
films, which varies the effective area and thus the resistance of 
the switching medium.[14,25] Moreover, the switching voltage of 
such devices is deemed too high (≈3 V), which could hinder its 
application in energy-efficient computing. Furthermore, only sta-
tistical analysis of standalone devices was performed, and CBA-
based circuits for neural network hardware were not reported. To 
exploit 2D material-based memristive CBA for next-generation 
computing hardware, it is essential to develop controllable mate-
rial growth and clean transfer technique, in addition to robust 
and scalable process integration.

Hafnium diselenide (HfSe2) is a 2D semiconductor with 
indirect bandgap, and variable resistive states have been 
reported in HfSe2-metal compounds, manifesting its poten-
tial for memristive devices.[28,29] Moreover, most HfSe2-based 
electronic devices are fabricated by exfoliated flakes due to 
the challenges associated with large-scale growth and fabrica-
tion.[29,30] In this work, a memristive CBA based on HfSe2 is 
fabricated and implemented in neural network hardware. The 
2D polycrystalline HfSe2 is grown by molecular beam epitaxy 
(MBE) with a controllable and uniform growth on wafer-scale 
substrate. A chemical-free metal-assisted van der Waals (vdW) 
transfer method is developed, which overcomes the stability 
issue of HfSe2 in ambient conditions.[31] Building on such a 
platform, memristive CBA with a low switching voltage and 
energy consumption is demonstrated. The RS mechanism 
relies on conductive metal filaments driven by external voltage 
bias and exhibits a strong dependence on defect density and 
electrode materials. Moreover, the devices possess analog syn-
aptic weight transition with large switching ratio, resulting in 
high image recognition accuracy in ANN. Hardware implemen-
tation of neural networks is achieved based on the CBA, such 
as accurate and energy-efficient MAC operation and program-
mable convolutional image processing operation, manifesting 
the potential of 2D material-based memristors for next-genera-
tion neural network hardware.

2. Results and Discussion

2.1. Wafer-Scale Synthesis of Polycrystalline Hafnium Diselenide 
Thin Film

The qualities of as-grown 2D-material thin films vary with dif-
ferent substrates due to the difference of adatom diffusion con-
stant,[32] existence of substrate dangling bonds,[33] and the guide 
effect coming from the atomic orientation of substrates.[34,35] 
Usually, the growth on single-crystal substrate with similar lat-
tice structure results in high crystal quality and the same ori-
entation as the substrate. Inspired by such phenomena, we 
intentionally choose an amorphous substrate (SiO2/Si wafer) to 
synthesize 2D thin film with intrinsic defects to create pathways 
for the movement of metal ions to form filaments. Figure 1a 
shows the working principles of the MBE system, which uti-
lizes heated pure solid sources of selenium and hafnium to 
generate atom beam fluxes that are then deposited onto the 
substrate surface during synthesis, enabling 2-inch wafer-scale 
material growth with precise control of the beam flux and sub-

strate temperature. Details of the growth parameters of HfSe2 
synthesis are described in Section 4. Compared to CVD, where 
complex precursors are frequently used, our system can effec-
tively eliminate the occurrence of by-products and impurities. 
Furthermore, the stable and well-controlled beam flux and the 
rotational substrate with uniform temperature distribution 
make it suitable for uniform wafer-scale HfSe2 growth.

Figure 1b shows the in situ reflective high energy diffraction 
(RHEED) patterns measured during HfSe2 growth at different 
growth times to monitor the growth of HfSe2/SiO2. As shown, 
the RHEED pattern taken before the growth (0  min; the top 
image) shows a typical RHEED pattern for amorphous SiO2 
substrate.[36] After 5 min of growth, the feature-less amorphous 
RHEED pattern evolves into streaky diffraction patterns, indi-
cating a polycrystalline lattice structure.[37] The parallel streaks 
become sharper and brighter without Debye rings when the 
growth time exceeds 10 min, indicating a flat film without onset 
islands.[35] The pixel intensity line profiles along the dashed line 
as highlighted in the bottom image (10 min) are extracted and 
shown in Figure  1c, where an apparent increase of the streak 
brightness is found as the growth time is increased. The full 
width at half maximum (FWHM) of the zero-order streak is 
also extracted and shown in the inset of Figure 1c, revealing an 
evident decrease of FWHM. The streak brightness and FWHM 
trends confirm the improvement of crystallinity with thickness, 
which was also reported in epitaxy growth method.[38] Further-
more, the in-plane orientation of HfSe2 during growth is ana-
lyzed by utilizing an azimuthal RHEED method, where the 
reciprocal space along different directions is measured by var-
ying the azimuthal angle of the sample.[39] Figure 1d shows the 
azimuthal angle-dependent intensity profile (along the dashed 
line in Figure 1b) in a polar coordinate system, where the radius 
represents the reciprocal distance from the zero-order spot 
and the polar angle refers to the azimuthal angle. For mate-
rial with preferred in-plane crystal orientations, the reciprocal 
space should exhibit discrete spots, indicating different RHEED 
patterns along with different azimuthal angles.[39] However, 
instead of showing discrete spots, a green circle (highlighted by 
the white dashed line) is observed in Figure 1d, which refers to 
the first order streak, indicating that the grains are randomized 
without any preferred in-plane orientation.[40] It is worth noting 
that such randomized in-plane grains are consistent with the 
substrate structure since the amorphous SiO2 does not exhibit 
any crystal orientation. The RHEED analysis results reveal that 
a flat polycrystalline film is grown with its grains exhibiting no 
preferred in-plane orientation, indicating the existence of rand-
omized grains and grain boundaries with intrinsic defects.

Ex situ characterization is performed to further under-
stand the physical and chemical properties of the as-grown 
HfSe2 film (Figure  1e). The growth rate is analyzed by meas-
uring the film thickness with different growth times, showing 
a well-controlled growth rate of ≈1 nm min−1 (Figure S1, Sup-
porting Information). Furthermore, a slight variation in thick-
ness is measured at different positions across the 2-inch wafer 
for each growth time, indicating a uniform growth. Figure  1f 
shows the Raman spectrum with a clear A1g peak at 199 cm−1, 
and the X-ray diffraction (XRD) result proves the existence of 
strong (001) texture in HfSe2 (Figure S2, Supporting Informa-
tion), confirming the formation of a layered structure in HfSe2 
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film that is in good agreement with previous reports.[33,35,41] 
The uniformity of the HfSe2 is further illustrated by the Raman 
mapping of the A1g peak as shown in Figure 1g, where the color 
refers to the peak position value. In addition, Raman map-
ping of A1g peak at five locations over the whole 2-inch wafer 
is shown in Figure S3, Supporting Information, which further 
confirms the uniformity of the as-grown HfSe2 film. The details 
of Raman sample preparation and Raman mapping setup are 
discussed in Section 4. X-ray photoelectron spectroscopy (XPS) 
is also performed to confirm the chemical composition and ele-
ments directly, and the results are shown in Figure  1h,i. The 
binding energies of Hf 4f and Se 3d indicate the existence of 

chemical bonds between Hf and Se, which are also consistent 
with the previous report.[42] The fitted peak positions are listed 
in Table S1, Supporting Information. Based on the crystallinity 
analysis and material characterizations, uniform polycrystalline 
HfSe2 growth is demonstrated on a wafer-scale substrate.

2.2. Metal-Assisted Van der Waals Transfer of Hafnium 
Diselenide

A wet process using chemical etchant (i.e., sodium hydroxide 
solution) is the most frequently used approach to transfer 2D 
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Figure 1. Growth and material characterization of the wafer-scale MBE-grown HfSe2 thin film. a) An illustration of the arrangement of the substrate 
holder, Se and Hf flux. The Se flux and Hf flux are measured by beam flux monitor (BFM) and thickness monitor, respectively. b) RHEED patterns during 
growth. The white dashed line highlights the line scan region used in (c) and (d). c) The streak intensity line profile during growth. Inset shows the 
FWHM of the middle streak. d) The azimuthal angle-dependent intensity profile after growth. The white dashed circle highlights the first-order streak. 
e) Optical image of an as-grown HfSe2 thin film on a 2-inch SiO2/Si wafer. f) Raman spectrum of as-grown HfSe2 thin film. g) Raman mapping of A1g 
peak position over a 10 µm × 10 µm region. h) Hf 4f and i) Se 3d XPS peaks. The black arrows label the binding between Hf and Se.
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film from as-grown substrate to the target substrate.[43] How-
ever, this process is usually followed by a deionized water rinse 
step to remove the solvent residuals, which introduces water 
molecules to the surface of 2D material, resulting in wrinkles 
and bubbles between the target substrate and 2D material.[44,45] 
Furthermore, external mechanical supporting layers, such as, 
polymethyl-methacrylate (PMMA), are necessary to prevent 
the film from cracking. However, these flexible organic poly-
mers are difficult to clean thoroughly, especially after a long 
baking step, which is usually used to improve the adhesion of 
2D material with target substrates.[44] To address these issues, 
we developed a metal-assisted vdW transfer method that 
avoids any wet process and direct contact between HfSe2 and 
supporting layers. Figure 2 shows the transfer steps and the 
associated fabrication process of the HfSe2-based CBA. First, 
a layer of gold (Au) is deposited over the as-grown polycrys-
talline HfSe2 (Figure  2a,b) and followed by the deposition of 
PMMA and adhesive tape as supporting layers (Figure 2c). It 
is worth noting that the Au capping layer not only prevents 
HfSe2 from oxidation but also eliminates residuals and impu-
rities at the interface between the HfSe2 and Au layers. More-
over, HfSe2 film can be directly peeled off from SiO2 due to 
its strong interaction with Au layer (Figure 2d), thus resulting 
in a dry and clean process.[46,47] After the peel-off step, the 
film is pressed on the target substrate immediately and fol-
lowed by heating using hotplate and acetone cleaning steps 
to release the adhesive tape and PMMA layer (Figure  2e–g). 

Then, top electrodes (TE) are patterned and deposited, and the 
remaining gold layer is etched away using reactive ion etching 
(RIE) (Figure 2h). Details of process parameters are shown in 
Section 4.

Figure 2i shows a microscope image of the fabricated CBA, 
and the highlighted square depicts the material stack in the 
crosspoint region where titanium (Ti) and Au are used as the 
bottom and top contact electrodes, respectively. Other CBA 
images with different array sizes are shown in Figure S4, Sup-
porting Information. In other gold-assisted exfoliation pro-
cesses, the Au layer needs to be fully etched away using solu-
tion etchant.[46] However, the Au capping layer remains at the 
crosspoint region using our approach, which can protect HfSe2 
during the plasma etching step while serving as contact TE 
(Figure S5, Supporting Information). Figure 2j shows the sur-
face roughness of the Au/HfSe2 before and after transfer, indi-
cating negligible effect on the film roughness by utilizing the 
metal-assisted vdW transfer technique. The insets show the 
optical images before and after transfer, showing the wafer-
scale device fabrication capability that is suitable for realizing 
large CBA. Besides, microscope images and atomic force 
microscope (AFM) height images of the transferred Au/HfSe2 
stack film are shown in FigureS S6 and S7, Supporting Infor-
mation, respectively, showing a flat and continuous transferred 
film with much less wrinkle density over a large area as com-
pared to the hexagonal boron nitride (hBN) CBA,[14] which ena-
bles CBA with small device variation.

Adv. Mater. 2021, 2103376

Figure 2. Schematic showing the metal-assisted vdW transfer technique and device fabrication process flow. a) As-grown HfSe2 thin film. b) Au 
layer deposition. c) PMMA spin coating and adhesive tape cover. d) Peel off HfSe2. e) Transfer to the target substrate. f) Heat up and release tape.  
g) Acetone cleaning and remove PMMA. h) Top electrode deposition and Au dry etch. i) Optical microscope image of a CBA. The right inset highlights 
the material stack at the cross point region. j) Surface roughness of Au/HfSe2 film before and after transfer. Insets show the optical image of the 
large-scale vdW transfer.
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2.3. Direct Current Characterization and Switching Mechanism 
of Hafnium Diselenide Memristor

2.3.1. Direct Current Characterization of Hafnium Diselenide 
Memristor

Figure 3a shows a typical RS I–V curve of our memristors, and 
the black arrows label the voltage sweep order. The voltage is 
defined as the potential difference between the Ti electrode 
(VTi) and the Au electrode (VAu), leading to an electric field from 
Ti to Au under positive voltage bias and vice versa. The device 
switches from high resistance state (HRS) to low resistance 

state (LRS) under positive voltage sweep and remains at LRS 
even when the voltage passed through 0  V to negative bias, 
showing a typical nonvolatile RS property. A positive voltage 
sweep is required for SET (transition from HRS to LRS), 
whereas a negative voltage sweep is needed for RESET (tran-
sition from LRS to HRS), indicating a typical bipolar charac-
teristic similar to other conductive-bridge memristors.[15,48,49] 
During the SET process, a small set voltage (Vset) is extracted 
at around 0.6  V, showing a low operation voltage than other 
2D material-based memristors.[15,18,19,23,50,51] Moreover, a low 
power consumption of only 0.82 pJ is needed to set the device 
(Figure S8, Supporting Information), manifesting its suitability 

Adv. Mater. 2021, 2103376

Figure 3. DC characteristics and the RS mechanism. a) A typical RS I–V curve of a memristor. The black arrows label the voltage sweep order. b) The 
endurance test of 500 cycles. The inset shows the voltage scheme for set and reset steps. c) Retention test of multiple conductance states under dif-
ferent compliance currents. d) Vset and Vreset distribution among 38 different devices. e) Cumulative probability of both HRS and LRS conductance value. 
f) C-AFM conductance map of HRS and LRS. g) Cross-sectional TEM images at regions with and without Ti filaments. h) Hard breakdown process of 
the Au/HfSe2/Au devices. i) Electroforming step and the reset process of the Au/HfSe2/Ti devices.
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for energy-efficient applications. To further evaluate the per-
formance of such devices as memristors, endurance, reten-
tion, and statistical analysis are carried out. An endurance test 
exhibiting a RS ratio of ≈100 for a cycle number of more than 
500 is obtained and shown in Figure 3b, indicating the stability 
of such devices during cycle-to-cycle measurement. The inset 
shows the voltage supply scheme during the measurement, 
where the HRS and LRS are constantly measured and extracted 
at +0.1  V. Moreover, the retention results with multiple resist-
ance states are shown in Figure  3c, and a retention time of 
longer than 104 s is demonstrated for all four resistance states, 
indicating a stable nonvolatile characteristic with multiple con-
ductance tunability. The different LRS shown in Figure  3c is 
obtained using different compliance currents, and the similar 
HRS values in different cycles are adjusted by different nega-
tive voltage sweep range (see Figure S9, Supporting Informa-
tion, for detailed I–V curves). Furthermore, a statistical analysis 
of Vset, reset voltage (Vreset), conductance of HRS and LRS are 
shown in Figure  3d,e, showing a comparable device variation 
to other 2D material-based memristors.[52] In Figure  3d, an 
average Vset of ≈0.7 V is measured, leading to a low power con-
sumption. Figure 3e shows the cumulative probability distribu-
tion of HRS and LRS, and a RS ratio of ≈50 times is retained 
despite experiencing a spatial variation.

2.3.2. Resistive Switching Mechanism

The electrochemical metallization mechanism is one of the most 
frequently used explanations for 2D material-based memristors, 
where the conductive filament is formed by active metal ions 
driven by external bias, such as Ti, Ag, Cu.[12,15,53] In a similar 
fashion, we reveal that the RS mechanism is based on the forma-
tion and rupture of metallic filaments. To verify that the RS is 
taking place at localized regions (i.e., filament), conductive-atomic 
force microscopy (C-AFM) confirms the formation of conductive 
filaments at LRS as compared to the conductance map of HRS 
(Figure 3f). The details of C-AFM measurement are explained in 
Figure S11, Supporting Information. To verify the composition 
of conductive filaments in the switching medium, transmission 
electron microscopy (TEM) and energy dispersive X-ray (EDX) are 
performed, as shown in Figure 3g. The TEM image is re-colored 
based on the EDX results (Figure S12, Supporting Information), 
and the white dashed lines highlight the region of Au and Ti. 
The apparent overlap region between Ti and HfSe2 is found in 
the top image compared to the bottom image, indicating the dif-
fusion of Ti inside the switching medium, which results in the 
formation of conductive filaments. The atomic percentage line 
profile of EDX is plotted in Figure S13, Supporting Information, 
which clearly shows a higher Ti atoms volume in the overlapped 
region than the other regions. To further confirm the switching 
mechanism, electrical measurements are carried out using Au/
HfSe2/Au device as the control sample. It should be noted that 
our devices possess the electroforming step, and the I–V curves 
of the forming step between the memristors and control samples 
are compared. Figure  3h shows the first time “electroforming 
step” and the successive negative voltage sweep among four 
control samples. The device is unable to reset back to HRS after 
a positive voltage sweep, indicating the occurrence of a hard 

breakdown (BD) instead of soft breakdown (or electroforming), 
with an average BD voltage (VBD) of 2.15 V. On the contrary, in 
Figure 3i, the devices can be reset back to HRS, and the average 
forming voltage (Vforming) is 1.51 V, which is less than 2.15 V in 
control samples, implying that the RS is strongly dependent on 
the Ti electrodes. Besides, the smaller Vforming compared to VBD 
is attributed to the diffusion of Ti that facilitates the forming step 
in Au/HfSe2/Ti sample, which is consistent with other memris-
tors that are also relying on active metal filaments.[14] In addition, 
Figure S14, Supporting Information, shows the C-AFM current 
maps of the electroformed and BD samples. A large conductive 
region is found in the Au/HfSe2/Au sample after BD, which may 
be caused by the irreversible structural deformation under high 
electric field stress.[54] However, by forming at a lower bias, the 
Au/HfSe2/Ti sample only shows localized conductive filaments, 
indicating that structural deformation is absent and thus the RS 
behavior is caused by the Ti-based filament mechanism. Besides, 
the defects in 2D materials also play an important role as active 
metal ion diffusion paths in the RS medium. For devices based 
on single-crystal material with negligible defects, such as, exfoli-
ated hBN and epitaxial silicon (Si), the RS characteristic is inhib-
ited due to the lack of defect-induced diffusion paths for filament 
formation.[15,48] However, the RS behavior occurs when defects 
or dislocations are introduced into these materials, in which a 
higher defect density is shown to reduce the forming voltage 
(Figure S16, Supporting Information).

2.4. Implementations of Hafnium Diselenide-Based Crossbar 
Array

2.4.1. Synaptic Plasticity and Modeled Artificial Neural Network

As one of the basic components in human brain, synapses are 
the direct neuron-to-neuron connection units where spikes 
generated by the pre-synaptic neuron are transmitted to the 
post-synaptic neuron by releasing neurotransmitters. More-
over, the strength of such connection can be refreshed based 
on the spikes, which is known as synaptic plasticity.[4] In this 
way, an artificial synapse can be mimicked using a two-terminal 
memristive device that possesses tunable conductance values. 
Here, we demonstrate an artificial synapse using HfSe2-based 
memristor, where the Ti and Au electrodes are mimicking the 
pre-synaptic and post-synaptic terminals, respectively. More-
over, the current measured at a small read voltage (0.1 V) rep-
resents the post-synaptic current (PSC), often referring to the 
synaptic weight. Figure 4a shows long-term potentiation and 
depression (LTP and LTD) under identical positive and nega-
tive pulse trains. Pulse train with larger amplitude leads to 
more efficient control of the synaptic weight, indicating syn-
aptic amplitude dependence plasticity (SADP). Such SADP is a 
vital behavior for biological synapses in responding to external 
chemical stimulations, which induce a change in action poten-
tial and influence synaptic plasticity.[55] To further investigate 
such behavior, another frequently used nonidentical pulse 
train with increasing pulse amplitude is applied to the device, 
and the modulation of stimulated synaptic weight is shown in 
Figure  4b.[56,57] The pulse amplitude varies from 0.6 to 0.85  V 
(−0.7 to −1.1 V) during potentiation (depression), and the device 
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conductance is measured at 0.1 V. Pulses with small amplitude 
can slow down the initial change of PSC, whereas pulses with 
large amplitude can prevent the device from saturation, indi-
cating the amplitude sensitivity of the devices. Besides, the 
retention results of 26 conductance states measured after every 
four pulses are shown in Figure 4c, indicating a typical analog 
transition of conductance states. To this end, a fully-connected 
perceptron neural network is simulated using the NeuroSim+ 
platform to perform offline classification based on the Modified 
National Institute of Standard and Technology (MNIST) data-
base.[58] As schematically shown in Figure 4d, the ANN consti-
tutes 20 × 20 input neurons, 100 hidden neurons, and 10 output 
neurons. The 400 input neurons correspond to the input black 
and white images with 20 × 20 pixels encoded from the MNIST 
dataset, and the pattern recognition results (0–9) are presented 
through the ten output neurons. The weighted sum is pro-
cessed with sigmoid activation and binarization functions and 
then propagated to the output neuron layer.

During the simulation, the ANN is pre-trained by software 
using the training dataset of MNIST, and then the hardware is 
emulated to classify the MNIST testing dataset. Offline classi-
fication shows good tolerance to the linearity of LTP and LTD 
because the conductance value of each synapse can be itera-
tively programmed to the desired value.[59] In this way, although 
the measured LTP and LTD data may exhibit nonlinearity 
under identical pulse trains (Figure  4a), they are still appli-
cable to offline classification. Moreover, identical pulse trains 

also reduce the time latency and power consumption of the 
periphery circuit.[57] In addition, the implementation of offline 
classification using other memristive CBA has been reported to 
evaluate the synaptic device performance under real-world sce-
narios.[5,60,61] A high recognition accuracy of 93.34% is achieved 
using the data measured at 1.0 and −1.2 V (Figure 4e). To prove 
the programming reliability of the device, we measured LTP 
and LTD consecutively to extract the cycle-to-cycle variation 
from Figure 4a (shown in Figure S17, Supporting Information). 
Here the variation is extracted in terms of the percentage of 
the current range (maximum current—minimum current). A 
small cycle-to-cycle variation of 2.42% is achieved as compared 
to other electronic synapses.[62] Moreover, the endurance test 
at 85 °C is also shown in Figure S18, Supporting Information, 
indicating the stability under harsh operating conditions.[52,63] 
The sensitivity of offline classification to RS ratio is also inves-
tigated. Figure 4e shows an apparent improvement in recogni-
tion accuracy with increasing RS ratio as it could compensate 
for the non-zero HRS leakage current.[60]

2.4.2. Accurate and Energy-Efficient Multiply-and-Accumulate 
Operation and Convolution Image Processing

MAC operation is a core computational operation for matrix-
heavy applications such as pattern recognition, signal pro-
cessing, and speech recognition.[5] As shown in Figure 5a, a 
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Figure 4. Artificial synapses and ANN implementation. a) LTP and LTD under positive and negative pulse trains with identical pulse amplitude. b) LTP 
and LTD under pulse train with nonidentical pulse amplitude. Insets show the waveform of the nonidentical pulses. c) Retention of 26 conductance 
states during the analog transition from HRS to LRS. d) Schematic of the fully connected ANN using HfSe2-based synapse. e) Sensitivity of the recogni-
tion accuracy under different RS ratios. The highlighted point uses data measured by a pulse train with identical amplitude.
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vector-matrix multiplication (VMM) operation comprises an 
input vector, a matrix, and an output vector. Moreover, the 
output vector Ij follows the equation: Ij = ΣiViGij, where Vi and 
Gij refer to the input vector and the matrix values, respectively. 

For a M × N matrix, the entire VMM operation requires M × N 
number of multiplications and (M−1)× N number of addi-
tions, resulting in additional power consumption during the 
data movement in conventional von Neumann architecture. 

Adv. Mater. 2021, 2103376

Figure 5. MAC and image processing implementations using HfSe2 memristive CBA hardware. a) Mathematical expression of MAC operation. b) Sche-
matic of hardware MAC operation between input voltage vector and device conductance matrix. The yellow-colored cells label the column that is being 
measured. c) Measured output current mapping under LRS condition. d) The corresponding distribution of error between measured and arithmetic 
results. The inset shows the relationship between the measured and arithmetic currents. e) Measured output current mapping under HRS condition. 
f) The corresponding distribution of error between measured and arithmetic results. The inset shows the relationship between the measured and 
arithmetic currents. g) The original input image. h) Different kernel designs. i–k) Processed images using hardware with different kernels, including 
soft, vertical, and horizontal edges. l) The combination of figure (j) and (k), showing edge detection in both directions.
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However, in memristive CBA structure, the input vectors and 
matrix values are physically connected, and the voltage-con-
ductance multiplications and current-current additions are 
performed through Ohm’s law and Kirchhoff ‘s current law, 
respectively. As shown in Figure 5b, the vector-matrix network 
can be directly mapped into a CBA, where Vi refers to the 
input voltage vector, and Ij refers to the output current vector, 
resulting in a simplification of the number of operations and 
high degrees of parallelism by direct current measurement. 
Moreover, because of the programmable crosspoint conduct-
ance in the memristive CBA, it becomes convenient to refresh 
the matrix values to achieve different MAC operation-based 
applications using the same CBA.[5]

Here we consider a situation where three voltage inputs 
(V1, V2, V3) come from three rows of memristors in the CBA, 
and the output vector Ij is measured column by column (as 
shown in Figure  5b). Figure  5c shows the measured output 
current mapping from one column when all the three devices 
are at LRS. During the measurement, V1 and V2 vary from 
0 to 0.255  V, whereas V3 is kept at 0.128  V, and the current 
increases monotonically with the input voltage, which is con-
sistent with Ohm’s law and Kirchhoff ‘s law. Different current 
mappings under different V3 are also measured and shown in 
Figure S19, Supporting Information, showing MAC operation 
with a variable input vector. The error between measured and 
arithmetic results is shown in Figure  5d, where a small error 
standard deviation of 0.29% is extracted in one column. After 
the memristors are reset to HRS, the output current mapping 
is measured and compared again, and an error standard devia-
tion of 0.51% is achieved (Figure 5e,f), manifesting high-accu-
racy MAC operations. Insets in Figure  5d,f show the relation 
between the measured current and the arithmetic current with 
a narrow distribution and slope close to 1, indicating good con-
sistency between the measured and expected output current. 
Moreover, the power efficiency of the CBA for MAC operation 
is estimated to be around 8-trillion operations per second per 
Watt, showing the potential for energy-efficient computing 
hardware (Table S2, Supporting Information).

Convolution neural network is a practical hardware imple-
mentation that utilizes the MAC operation to enable efficient 
feature extraction of images via convolutional image pro-
cessing.[64] Figure S21, Supporting Information, shows the 
detailed procedure of hardware-based convolutional image 
processing. The input voltage signals are mapped from the 
pixel values of the original images. For each pixel of the orig-
inal image (Figure  5g), a convolution operation is carried out 
among the local neighboring voltage values (9 voltage inputs in 
total) and the programmed 3 ×  3 conductance matrix. During 
the convolution operation, the MAC operations in the same 
column are performed by directly measuring the output cur-
rent. The output current from each column is added together 
arithmetically, resulting in the final output current (Iout) at a 
specific pixel position (Pij). Finally, the output current map is 
reorganized and plotted as the output processed image.

Figure  5h shows the convolutional image processing using 
three different kernels, including soft, vertical edge detection, 
and horizontal edge detection. As for the actual kernel pro-
gramming, the conductance matrix is mapped from a 3  ×  3 
convolution matrix, and the sign of each conductance matrix 

element is determined by the conductance difference between 
HRS and LRS (Figure S21c, Supporting Information).[5,49] 
During this step, we program the kernel values based on the 
difference between the conductance of HRS and LRS of each 
memristor in the CBA, taking into account the device-to-device 
variation. The detailed designs of the equivalent conduct-
ance matrix for all three kernels are shown in Figure S22a, 
Supporting Information. The hardware processed images 
are shown in Figure  5i–l. As depicted in Figure  5i, the soft 
filter leads to a blurred image because it takes the average at 
each pixel position based on the surrounding pixel values. In 
Figure 5j,k, the different edge detection results originate from 
the kernel directions, in which the finite difference calculation 
at the local region is performed along with different directions, 
which are also essential filtering functions frequently used in 
image processing. The detailed processing method of Figure 5l 
is described in Figure S22b, Supporting Information, showing 
edge detection at both horizontal and vertical directions simul-
taneously. The comparison between software and hardware 
processed images is presented in Figure S23, Supporting Infor-
mation. In software processing, the kernel values are designed 
accurately under a device-variation-free condition, but such 
device variation is considered in hardware processing. We show 
that both software and hardware processed images achieve sim-
ilar results, indicating that the CBA is tolerant of device varia-
tion and capable of performing convolutional image processing 
based on MAC operation. Nevertheless, such device variation is 
also found in other CBAs, but the hardware processed images 
still achieve a high level of similarity to the software processed 
images.[61,65] This implies that the image processing results 
are not severely influenced by device variation in a small CBA. 
However, for MAC operations in a large-scale array, the device 
variation, sneak current, and current-resistance (IR) drop issues 
would have a more profound influence on the computing accu-
racy.[5] Therefore, further optimizations of material growth 
such as doping and thickness modulation could be explored 
to improve the device variation.[14,22,66] In addition, integration 
with access transistors or selectors is necessary to improve the 
computing accuracy in large-scale arrays,[5,67–69] which will be 
investigated in future work.

3. Conclusion

We have demonstrated a practical approach to implement 
memristor CBA in neural network hardware based on wafer-
scale polycrystalline HfSe2 thin film. A metal-assisted vdW 
transfer technique is developed to enable large-scale HfSe2 
film transfer, which serves as a universal platform to integrate 
other 2D materials in memristor CBAs. The memristors exhibit 
small switching voltage, stable endurance, and retention, as 
well as, low switching energy, indicating a stable control of con-
ductive filaments via the defect paths in the polycrystalline film. 
Moreover, the CBA successfully implements both neuromor-
phic and matrix-heavy workloads in neural networks, including 
artificial-synapse-based ANN, energy-efficient MAC operations, 
and convolutional image processing. Notably, high recognition 
accuracy is achieved in ANN, revealing its potential for neuro-
morphic computing. Moreover, the column-by-column MAC 

Adv. Mater. 2021, 2103376
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operation manifests a highly parallelized computing operation, 
opening a route to emerging applications in hardware accelera-
tors for matrix-heavy workloads related to artificial intelligence 
(AI) and machine learning.

4. Experimental Section
Hafnium Diselenide Synthesis Using Molecular Beam Epitaxy: HfSe2 was 

deposited on a commercially purchased p-type 2-inch silicon wafer with 
100  nm SiO2 (University Wafer) in an ultra-high vacuum MBE system 
(Eiko EW-100S). Pure solid Se (99.999%, Furuuchi Chemical) was placed 
in a k-cell and the Hf (99.9%, Furuuchi Chemical) source was placed in a 
carbon crucible faced to the electron beam gun.

The detailed process flow was as follow: The substrate was first 
heated to 800 °C over 60 min and maintained for 10 min for degassing 
purpose, and the Se cell was heated to around 145  °C with a flux of 
2 ×  10−6 Torr during the same period. The substrate temperature was 
then decreased to 750  °C over 15  min and maintained for growth. 
Afterward, the electron beam gun intensity was increased to 100  mA 
with a Hf flux speed of 0.05 Å s−1. Next, the shutters of substrate, 
Hf electron beam gun, and Se k-cell were open and maintained for 
5–30  min, depending on the required thickness. The substrate was 
kept rotating during the entire process, and the chamber pressure was 
maintained below 10−8 Torr.

Hafnium Diselenide Material Characterization: The HfSe2 was 
characterized by Raman spectroscopy (Renishaw, inVia), XPS (Quantera 
PHI II), TEM, and EDX (Talos F200X). A 30  nm thick HfSe2 film was 
used for Raman single spectrum and mapping (Figure 1f,g) to minimize 
the laser oxidation effect to the Raman peaks of HfSe2.[30,35] During the 
Raman spectrum, the laser power was limited by a small filter of 1% to 
reduce the laser oxidation. The Raman mapping was taken at a 10 µm × 
10 µm region, with a step of 0.5 µm.

Device Fabrication: First, a 15  nm gold layer was deposited over 
the as-grown HfSe2 thin film by E-beam evaporation (AJA E-beam 
evaporator). Second, two layers of PMMA 495 A4 were spin-coated 
over the Au layer with 1000 and 4000 rpm, respectively. After each spin 
coating, the coated PMMA was heated at 180  °C for 2  min. A layer 
of adhesive tape (SPS 1007R-13.0) was then pressed over the baked 
PMMA. Third, the Au/HfSe2 stack was peeled off and transferred to the 
target substrate. The bottom electrodes on the target substrate were 
fabricated by a Laser Writer patterning process (Hiedelberg DWL66+) 
followed by a Ti/Au/Ti (10/30/20  nm) metal deposition process and 
lift-off process. Afterward, the target substrate was heated at 100  °C 
for 5 min to enhance the adhesion, and was then heated to 150 °C for 
3 min to release the tape. The remained PMMA layer was resolved and 
cleaned with acetone for 1 h. The top electrodes were then fabricated 
by another patterning process followed by Ti/Au (20/40 nm) deposition 
and lift-off process. Finally, the middle Au film was etched away by  
SF6 -based RIE (Oxford ICP Etch Cluster) technique to form the 
crosspoint CBA.

Electrical Characterization: All DC I–V characteristics were measured 
using a Cascade probe station with an HP4155B semiconductor 
parameter analyzer. The input and output of VMM were also supplied 
and measured by the HP4155B analyzer. Synaptic pulse measurements 
were performed by Tektronics S4200 semiconductor parameter analyzer. 
The high-temperature measurement was performed by Lakeshore 
cryogenic probe station. All room temperature electrical measurements 
were carried out in the ambient condition. The endurance at 85 °C was 
measured in the vacuum condition.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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